Second Icelandic Licensing Round - Jan Mayen Offshore Exploration: A Status Update

Anett Blischke, Iceland GeoSurvey

Þórarinn S. Arnarson, National Energy Authority

The North-Dreki Licensing Area

Location Reference

- North-Dreki is part of the Jan Mayen Micro-Continent (JMMC) with indications and evidence of continental strata and suitable structures
- Similarities to licensing areas on- and offshore East-Greenland and offshore Norway, which has a proven hydrocarbon provinces, with analogues, e.g. Møre and Vøring basins.

Second Icelandic Licensing Round Northern Dreki Area

- Licensing Round was opened on the 3rd of October 2011
- ➤ Application deadline is on the 2nd of April 2012
- Norway (Petoro) has right to participate up to 25% in licenses granted within the Jan Mayen Agreement Area

2D Seismic reflection data surveys over the Jan Mayen Area

12°W

Magnetic Surveys

after Laurent Gernigon, 2011, NGU

Collaboration project
NGU, NPD & NEA Preliminary outline of the
aeromagnetic survey

JAS-11

in the western Norwegian Sea (green frame) planned for 2012.

Borehole & Seafloor Samples around the Jan Mayen Area

DSDP: 5 wells during Leg 38 in 1974

> ODP : 1 well during Leg 151 in 1993

ODP: 2 wells during Leg 162 in 1995

Cores provide density and velocity measurements to enable a depth – seismic tie (TWT) to confirm the Top Eocene marker for 3 wells on the Ridge.

- Seafloor Sampling (Core, Dredge & ROV grab samples)
 - NEA & NPD 2010
 - NPD 2011
 - VBPR 2011

Tectonic History of the JMMC

Collage based on results of recent research publications and observations at the JMMC

Data Source Reference List:

Dinkelman M.G. et al (2010): The NE Greenland Continental Margin. GeoExpro, No. 6. Gaina, C. et al (2009): Palaeocene-Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society, London, Vol. 166, pp. 1-16. Gernigon L. et al (2009): Geophysical insights and early spreading history in the vicinity of the Jan Mayen Fracture Zone, Norwegian-Greenland Sea. Journal of Tectonophysics, Vol. 468, pp. 185-205. Roberts, A. et al (2009): Margin Atlantic continental margin: Møre and Vøring basins. Petroleum Geoscience, Vol. 15, pp. 27-43. Brekke H. et al (2008): The Geology of the Norwegian Sea Continental margin: Møre and Vøring basins. Petroleum Geoscience, Vol. 15, pp. 27-43. Brekke H. et al (2008): The Geology of the Norwegian Sea Continental margin: Møre and Vøring basins. Petroleum Geoscience, Vol. 15, pp. 27-43. Brekke H. et al (2008): The Geology of the Norwegian Sea Continental Margin in the Jan Mayen Ridge. 1st Petroleum Exploration Conference in Iceland. Henriksen, N. et al (2008): Geological History of Greenland - Four billion years of Earth evolution. Geological Survey of Denmark and Greenland (GEUS), Ministry of Climate and Energy, Copenhagen. Mjelde, R. et al (2008): Crustal transect across the North Atlanti, Marine Geophysical Researches, Vo. 29, pp. 73-87. Mueller, R.D. et al (2008): Palaeo-age, depth-to-basement and bathymetry grids of the world's ocean basins from 140-1 Ma. Science, 319, 1357 (data used in GPlates 1.0 http://www.glates.org/index.html). Mosar, J. et al (2002): North Atlanti sea-floor spreading rates: implications for the Jan Mayen-Hrygg, Erindi á ársfundi Orkustofnunar. Gunnarsson, K. et al (1989): Geology and hydrocarbon potential of the Jan Mayen-Hrygg, Erindi á ársfundi Orkustofnunar. Gunnarsson, K. et al (1989): Series publications of the DSDP Leg 38 project ... http://www.deepseadrilling.org/38/dolp-to-.htm; specifically the paper: http://www.deepseadrilling.org/38/dolp-to-.htm; specifically the paper: http://www.dee

Lucy A. Ramsey, Steve M. Jones, Stewart Sinclair, Caroline S. Pickles (2005): Development of the Jan Mayer microcontinent by linked propagation and retreat of spreading ridges Original Research Article Norwegian Petroleum Society Special Publications, Volume 12, 2005, Pages 69-82.

Update Key-Section JMR & Conceptual Model of the Jan Mayen Basin

"Jan Mayen Basin":

Possibly sub-basalt basin containing pre- and post-Paleocene with thinning sequences due west and deepening. Possible also being intersected by igneous intrusions, "feed points" of the youngest rifting attempts.

Conceptual model – seismic data comparison Northern edge of the Dreki Licensing Area

SSW

Seafloor Sampling in 2011

- Dredge & ROV grab samples
- ➤ Samples indicate pre-Tertiary strata (Early Cretaceous to Late Permian Early Triassic) with sandstone of good quality that can act as a reservoir rock. In addition, it found rocks of an age that act as source rocks in Greenland.
- Detailed analysis are in progress at NPD & UiB

Sample	Description	Age
1-6	Limestone	Late Permian / Early Triassic (260 -245 ma)
4-1	Limestone	Early Cretaceous (140-136 ma)
6-2	Siltstone	Oligocene (34-23 ma)
	Sandstone	
11.3	Limestone	Late Eocene
11.6	Limestone	Early Cretaceous
13.5	Claystone	Eocene (46-48 ma)
13.6	Claystone	Eocene/Oligocene
14.4	Silt-limestone	Early Cretaceous
14.7	Limestone	Early Cretaceous
15.1	Siltstone	Eocene-Oligocene (50-25 ma)
15.4	Siltstone	Oligocene- Miocene (33-22 ma)
		Copyright: NPD

ROV – Dredge Sampling

MPD

Nils Rune Sandstå et al., 2012

http://npd.no/no/Publikasjoner/Presentasjoner/Bruk-av-ROV-sommeren-2011-pa-Jan-Mayen-Ryggen/

JMRS11 sampling project

http://www.tgsnopec.com/_uk/emails/Pr ojects/2012/02_JanMayen_Sampling_Fe b12/Jan_Mayen_Sampling_Feb12-2.html

Project aim:

- Recover Tertiary and Mesozoic rocks from the seafloor.
- Improve seismic ties.
- Sedimentologic and geochemical analysis
- Hydrocarbon seep analysis
- Improve the understanding of the Jan Mayen Ridge's geology and hydrocarbon prospectivity.

Stratigraphy

Sample campaign by NPD &

1000m Pseudo-Well Interpretation by VBPR / TGS

- Samples age ranges from Miocene-Oligocene to Permian-Triassic
- Hard data to substantiate seismic interpretations for Mesozoic basin stratigraphy, lithology and depositional environment of the Jan Mayen Ridge
- Grab sample & core logging, petrography, XRD, SEM, and biostratigraphy

unconformity

Stratigraphic trap

tilted fault block

What do we know?

- Best analogue comparison with East Greenland exploration examples and the central and southern Jan Mayen Ridge with the Møre Basin for the Norwegian side.
- Post Paleocene sedimentary rocks of sufficient thickness and age along the ridge flank areas.
- First evidences of pre-opening sedimentary strata of Paleozoic, Triassic-Jurassic and Cretaceous age underneath the east flank areas of the ridge.
- Potential reservoir rocks, focus on locally shallow marine to generally marine deposits, especially submarine fans / turbidite deposits for post Paleocene deposits, and from marine and limestone platform to continental deposits for the pre-opening formations.
- Potential traps are present, both structural and stratigraphic.
- > Hydrocarbon maturation is probably high close to igneous strata, more gas prone if sufficient source rocks are present and possibly intermediate mature for areas with none-annomalous heat flows.

Thank you very much for your attention!

Acknowledgements:

Nils Rune Sandstå & Morten Sand at NPD - Norwegian Petroleum Directorate
Laurent Gernigon at NGU - Norwegian Geological Survey
Mikal Trulsvik at VBPR – Volcanic Basin Petroleum Research AS

