Offshore geo-hazards to keep in mind during prospecting and exploration activities of the Jan Mayen Micro-Continent area.

Anett Blischke, Iceland GeoSurvey

Þórarinn S. Arnarson, National Energy Authority of Iceland

Bjarni Richter, Iceland Geosurvey

Hydrocarbon exploration in deep water, offshore environmental considerations and geo-hazards

Environmental parameters

- Reservoir depth (drilling depth, drill path & position)
- Water depth
- Sea currents, weather & wave heights
- Sea & surface temperature
- Sea ice
- Distance to shore
- Wild life

Deep water geo-hazards

- Complex & unstable sea beds
- Active & changing foundations
- Shallow geo-pressure
- Drilling hazards
- Deep sea environmental issues

Known hazards in O&G drilling and production operations process

- Knowing preventive measures beforehand contingency planning
 - Define possible environmental, geo- or technical hazards
 - · Risk assessment and mitigation is essential
 - Detailed contingency planning

Environmental impact parameters comparison

Criteria	Dreki Area	North- Western Europe	Gulf of Mexico	Offshore Brazil	Offshore Western Africa
Reservoir depth (m)	3 000 - 3 500	1 400 – 5 500	700 - 10 000	2 000 - 4 000	2 000 - 4 000
Water Depth(m)	1 000 – 2 000	10 - 2 000	0 - 3 000	0 - 3 000	0 - 3 000
Minimum sea bed temperature (C)	-1	-1	4	4	4
Maximum sea currents (m/s)	~1,0	~1,0	6-8 Lube currents	~1,0	~1,0
Minimum surface temperature (C)	-2 (-15)	~-10	Not relevant	Not relevant	Not relevant
Sea ice	Occasional pack ice	Not relevant	Not relevant	Not relevant	Not relevant
100-year wave height, Hs (m)	12	15-18	15	8	4
Wind speed design criteria (m/s)	36	36	40(54)	20	20
Distance to shore (km)	200 - 400	0 - 300	0 - 300	0 - 300	0 - 300
Gas off-take	No regional market & infrastructure	Regional market & infrastructure	Regional market & infrastructure	Regional market & infrastructure	No regional market & limited infrastructure

Jan Egil Arneberg, BayernGas, Norge, Iceland Exploration Conference, 2008

Environment impact parameters Main conclusions from the SEA (Strategic Environment Assessment)

- > Water depths 1000m to 2000 m in 80% of the area
- Great variability in biomass and consequently in habitats
- > The area is important feeding ground for pelagic fish, especially herring, and possibly for whales
- On-site current measurements needed (collected 2007-2008)
- Need for registration and mapping of delicate habitats of benthic species (started in 2008)
- No information on demersal fish in the area (investigated in 2009)

Deep sea drilling and operations example

Deep Water Geo-Hazards

Complex & unstable sea beds

- Soft, thick and high fluid content sediments at sea floor
- Rugged, steep and sloping topography that can lead to failure with sediment flows and turbidites
- Rapid sedimentation and erosional processes

Active & changing foundations

- Continuous and active faulting can lead to foundation instability
- · Salt tectonics and sea floor deformations
- Steep fault scarps and extreme topography

Shallow geo-pressure

- Shallow water flows
- Weakened sea bed and sub-sea bed foundation
- Mud volcanoes, diapirs, fluid vents

Drilling hazards

- Shallow gas
- Gas hydrates
- Shallow water flow

Deep sea environmental issues

- Deep sea currents
- Oscillating deep sea currents

Possible Environmental and Geo-Hazards to consider

Steve Wardlaw and Richard Salisbury, Fugro GeoConsulting, Geophyics and Geohazards – Defining Subsea Engineering Risk, March 2010

Deep Water Geo-Hazards – Applicability for the Jan Mayen Ridge

Complex & unstable sea beds

- Soft, thick and high fluid content sediments at sea floor
- Rugged, steep and sloping topography that can lead to failure with sediment flows and turbidites
- Rapid sedimentation and erosional processes possible gravitational failure on steep slopes of the JMR

Active & changing foundations

- Continuous and active faulting can lead to foundation instability
- Salt tectonics and sea floor deformations
- Steep fault scarps and extreme topography
- Earth quakes

Minding Topography

Multi-beam Survey 2008
Marine Research Institute & NEA

Possibly polygonal fault pattern related to dewatering of clay rich soft sediments.

Minding Topography

Multi-beam Survey 2008 Marine Research Institute & NEA

Sediment slide example

Minding Topography

Identifying steep slope areas

Modified Multi-beam Survey 2008
Marine Research Institute & NEA

Deep Water Geo-Hazards – Applicability for the Jan Mayen Ridge

Shallow geo-pressure

- Shallow water flows?
- Weakened sea bed and sub-sea bed foundation
- Mud volcanoes ?, diapirs, fluid vents

> Drilling hazards

- Shallow gas possible
- Gas hydrates possible
- Shallow water flow?

Possible indications of Gas Hydrates: Bottom Simulating Reflector (BSR) or diagenetic effects?

SSW **NNE** Data by courtesy of Spectrum -1500 **(sw) LML** -2000 -2250 ~500ms -2500 Jan Mayen

Possible indications of Gas
Hydrates: Bottom
Simulating Reflector (BSR)
or diagenetic effects?

Potential BSR mapped over the Dreki area of the JMMC

SSW

Fluid vent example – Southeastern JMR

NNE

- Pleistocene Pliocene
- UC Late Oligocene Miocene
- UC Base Late Oligocene
- Top Eocene
- UC Middle Eocene
- UC Top Paleocene
- Eocene Oligocene Intrusive

Steep slopes and gravitational failure example - JMR

> Deep sea environmental issues

- Deep sea bottom currents weak flow
- Oscillating deep sea currents local seasonal variations

- Measurements conducted by taking ADCP profiles from a ship and by an anchored mooring
- Weak flow of bottom current velocity in the area on the order of 5 cm/s
- Seasonal variation between upper current and bottom flows

Surface currents in the North-Atlantic

Marine Research Institute, 2007

Kjell Arne Mork et al, 2011

Mean current field (schematic)

Curtesy of Steingrimur Jónsson, University of Akureyri

Necessity to specifying Risk – Risk Matrix Example

Scale	Likelihood	Probability of occurrence	
5	Highly possible	>1 in 3	
4	Possible	1 in 10 to 1 in 3	
3	Unlikely	1 in 100 to 1 in 10	
2 Very unlikely		1 in 10'	
1	Negligible	<1 in 10"	

multiplied by

Scale	Effect	Impact as % of total project cost or time	
5	Extremely high	>100%	
4	Very high	10% - 100%	
3	High	4% - 10%	
2	Low	1%-4%	
1	Verylow	<1%	

Degree of Risk	Risk Level	Action suggested	
17-25	Intolerable	Project should not proceed unless hazard can be shown to be absent	
10-16	Substantial	Project should not proceed unless risk can be avoided, transferred or mitigated	
3-9	Signi feant	Further investigation to refine assessment; mitigate through relocation or re-design	
1-2	Insignificant	Accept and manage	

Steve Wardlaw and Richard Salisbury, Fugro GeoConsulting, Geophyics and Geohazards – Defining Subsea Engineering Risk, March 2010

Summary

- Need to be realistic: Accidents during the offshore oil and gas development do happen - but they need to be avoided as far as planning, technology and operations are concerned.
- Safety and environmental regulations have to be followed!
- Not to follow short cuts due to time or financial pressure this has played a role in the events leading up to most recorded incidents of disaster and pollution.
- Most typical causes of accidents include:
 - Equipment failure
 - Personnel mistakes
 - Extreme natural impacts (seismic activity, ice fields, hurricanes, etc.)
- Main hazards are connected with:
 - Spills and blowouts of oil, condensate, gas, and other chemical substances
 - Environmental consequences can be severe near shore, in shallow waters or areas with slow water circulation.

Thank you very much for your attention!

