Seismic volcano-stratigraphic characteristics of the Jan Mayen Micro-Continent area and the possible distribution of volcanic intrusion complexes and hydrothermal vents.

Anett Blischke, Iceland GeoSurvey
Pórarinn S. Arnarson, National Energy Authority
Karl Gunnarsson, Iceland GeoSurvey

Applying seismic volcano-stratigraphic in the Jan Mayen Micro-Continent area

... an ongoing & evolving study ...

- Improved seismic and recent seafloor sample data make it possible to generate an improved stratigraphic / volcano-stratigraphic characterization.

- Importance of understanding the igneous features and characteristics of the area in regards to:
 - Understanding the structural model and processes.
 - Differentiating amplitude anomalies, what is igneous vs. stratigraphic, diagenetic or hydrocarbon related?
 - What groups and types of igneous complexes and features can be described?
 - What areas are specifically affected?
 - Conclusions in regards to the timing of the igneous events with the available data?
Seismic data

Bathymetry map, well & seismic data

- JM-79
- JM-85 & data 2009 reprocessed
- JM-88
- IS-01-JMR
- IS-01-JMR 2008 reprocessed
- WI-JMR-08
- ICE-02
Stratigraphy

Sample campaign by NPD & 1000m pseudo-well interpretation by VBPR / TGS

- Samples age ranges from Miocene-Oligocene to Permian-Triassic
- Hard data to substantiate seismic interpretations for Mesozoic basin stratigraphy, lithology and depositional environment of the Jan Mayen Ridge
- Grab sample & core logging, petrography, XRD, SEM, and biostratigraphy

Hagevang et al., 2008
Tectonic History – Main igneous periods affecting the JMMC

Collage based on results of many research publications (since the 1970’s) and observations at the JMMC

Late Paleocene - Early Eocene
55.9 Ma

Early Eocene - Middle Eocene
49.7 Ma
~ Anomaly 22

Middle Eocene
47.9 Ma
~ Anomaly 21

Early Oligocene
33.1 Ma
~ Anomaly 13

Early Miocene
20.1 Ma
~ Anomaly 6

Possible oceanic crust time zones:

- ~56 Ma - 49.7 Ma
- ~49.7 Ma - 47.9 Ma
- ~47.9 Ma - 33.1 Ma
- ~33.1 Ma - 20 Ma to 19 Ma

At time interval build up of oceanic floor.
Central East Greenland coastal break-up

(57-54 Ma; ~C24) magmatic centers / complexes, and post break-up intrusions (~53-36; C23-C16)
Central East Greenland coastal break-up

Southwestern region of the Jan Mayen Micro-Continent prior to rift separation from the East Greenland coast. Analogue for igneous features and structural lineaments in time & scale of the Southern Ridge Complex.

Geological map of the Kangerlussuaq Fjord region

Geological map of the Wiedemann Fjord–Kronborg Gletscher tectonic lineament
Sill seismic facies analysis

Case study – analogue for JM
Planke et al, 2005

Sill seismic facies units.

Saucer-shaped:
1. Shallow Intrusions
2. Deeper Level Intrusions
3. Climbing Saucer-Shaped

Layer parallel:
4. Layer-Parallel Rough (~1.5-4s)
6. Slightly Saucer-Shaped (~1.5-4s)
8. Smooth Layer-Parallel (~2.5-5s)
9. Basin-Parallel (~2.5-5s)

5. Planar transgressive

7. Fault block
Igneous feature examples at the JMMC

Larger scale intrusion complex and sill intrusions

Middle Eocene saucer shaped rough wide vent about 0.7-1.2 second below seabed.

Intrusion into shallow sediment probably along a fault zone and saucer shaped rough wide vent about 0.25-1.5 second below seabed. Possibly this intrusion happened before the Oligocene erosion.
Igneous feature examples at the JMMC

Sill intrusion and hydrothermal vent complex

Data by courtesy of ORKUSTOFNUN
National Energy Authority

Basalt or sediment formations ???
Eocene-Early Oligocene saucer shaped rough wide vent about 1 second below seabed.

Pockmark possibly indicating continuous activity.
Possibly Early Oligocene hydrothermal vent about 0,8 second below seabed and slightly rough shaped sills.
Stratigraphic / volcano-stratigraphic characteristics

Key line interpretation across the central Jan Mayen Ridge Complex
Volcano-stratigraphic characteristics

Jan Mayen Main Ridge – main subdivision

Legend:
- Late Quaternary - Late Oligocene
- Early Oligocene - Paleocene
- Lower Paleocene
- Paleocene - SDR/Volcanics/Basalt
- Volcanic centre Post-Paleocene
- Late Oligocene to Early Miocene shallow Basalt Intrusions
- Poss. Low Cretaceous
- Poss. Jurassic/Triassic
- Poss. Paleozoic
- Poss. Caledonian Basement
- Oceanic crust
Stratigraphic / volcano-stratigraphic characteristics

Key line interpretation at the eastern flank of the Jan Mayen Main Ridge, just south of the so called Jan Mayen High
Volcano-stratigraphic characteristics

Northern edge of the Dreki licensing area

(A) Paleocene Volcanics (Plateau basalts & SDR ?)

(B) Eocene Escarpment / Sill intrusives on the Main Ridge

(C) Poss. Early Oligocene Escarpment

(D) Poss. active Volcanic Complex from Eocene to Early Miocene close to regional transform fault

Data by courtesy of **Spectrum**
Stratigraphic / volcano-stratigraphic characteristics

Key line interpretation at the central ridge of the JMMC
Volcano-stratigraphic characteristics

Northern edge of the Dreki licensing area

Data courtesy by Spectrum

Winch (ms)
Volcano-stratigraphic characteristics

Northern edge of the Dreki licensing area

Data courtesy by Volcano

First anomalous magnetic pick undefined.
Stratigraphic / volcano-stratigraphic characteristics

Key line interpretation at the northern edge of the Southern Ridge Complex
Volcano-stratigraphic characteristics

Eastern edge of the Dreki Licensing area

Data by courtesy of Spectrum
Stratigraphic / volcano-stratigraphic characteristics

Key borehole interpretation at the southern edge of the Southern Ridge Complex
By intrusive altered basalt breccia and sediment contact.
Possibly glassy contact of younger Middle Eocene intrusion into an older basalt breccia formation.

K/Ar 41.8 Ma ± 1.6
K/Ar 33.5 Ma ± 2.8
K/Ar 50.5 Ma ± 5.5
40.6 Ma ± 1.8

Photo Source: IODP / TAMU

Time determination uncertainties !!!
Volcanic zones of JMMC

Possible scenario

- SDR (Seaward Dipping Reflectors)

- Poss. post break-up, deeper seated larger intrusions

- Volcanic complexes / escarpments just above the Top Paleocene marker

- Possibly anomaly 20 to 17 basalt (Middle Eocene) province

- Probably faulted oceanic ridges / transition area

- Possible rift attempt between anomalies 17 to 13 (Late Eocene – Earliest Oligocene)

- Jan Mayen Trough covered by flat-lying shallow intrusions / sills

- Latest Oligocene – Early Miocene composite sheet of flat-lying, shallow intrusive (approx. ~ anomalies 7 to 6)

- Important fault / fractures zones that influence and subdivide the JMR.
Distribution and depth level of single *sill intrusions* only above the Top Paleocene stratum of the Jan Mayen Ridge

Ögmundur Erlendsson, MSc. Thesis, 2010

- Deepest sill intrusions (green & orange), first and the main phase: Top Paleocene to Middle Eocene
- Medium deep (yellow), second phase: Eocene to Early Oligocene
- Shallow (blue), third phase – Early to Middle Miocene
Summary

- Igneous feature within the main ridge below the Paleocene are probably analogue to East Greenland coast with series of dyke intrusions close to structural weak zones.

- Paleocene Volcanic formation of plateau basalts & SDR’s are difficult to differentiate seismically, if not confirmed by drilling. The SDR are not atypical and appear to vary along the east flank of the JMMC and might just represent the first onto the ridges on-lapping sections, with their main thick intervals being not visible on seismic data below the younger volcanic complexes.

- A small accommodation space (low) was formed along the eastern edge of the Jan Mayen Main Ridge with its eastern edge being the Eocene volcanic complexes along the eastern margin.
Summary

Post-Paleocene Activities:

1) Top Paleocene to Middle Eocene escarpments, sills, larger scale intrusives especially along the east ridge flank.

2) Possible Late Eocene to Early Oligocene escarpment, sills, larger scale intrusives, especially along the east flank but also along the west ridge flank and sub-basin areas.

3 a) Poss. active volcanic complex from Eocene to Early Miocene close to regional transform fault, especially along the NE edge of the JMMC and south of the Jan Mayen Volcanic complex itself.

3 b) Early to Middle Miocene shallow and regional extensive intrusions along the western and southern edges of the micro-continent, most likely simultaneous as the opening of the Kolbeinsey Ridge.

Diagenetic impact of surrounding sediments by intrusions was observed to be around 200m, as observed in DSDP well 38-350, and amplitude anomalous areas above the intrusive features on seismic data.
Thank you very much for your attention!

Acknowledgements:

Sigurveig Árnadóttir at Iceland Geosurvey
Ögmundur Erlendsson at Keilir, Atlantic Center of Excellence
Don Sims at the IODP / TAMU, U.S.A.

The Pre-Rift Unconformity